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Lattice ribbons: A model of double-stranded polymers

E.J. Janse van Rensburg,! E. Orlandini,? D.W Sumners,®> M.C. Tesi,? and S.G. Whittington®
! Department of Mathematics, York University, Downsview, Ontario, Canada M3J 1P3
2Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A1

3Department of Mathematics, Florida State University, Tallahassee, Florida 32306-3027
(Received 24 August 1994)

We introduce a discrete ribbon model for double-stranded polymers (such as duplex DNA) where the ribbon
is constrained to lie on the simple cubic lattice Z*. The ribbon is made up of a sequence of plaquettes and can
either be open or closed. We investigate the growth of the number of ribbons as a function of the number of
plaquettes and use Monte Carlo methods to estimate the dimensions of the ribbon, the writhe of the backbone
and, in the case of orientable closed ribbons, the linking number of the two boundary curves.

PACS number(s): 05.50.+gq, 87.15.—v, 02.70.Lq

The traditional model of the conformational properties of
linear polymers in dilute solution is the self-avoiding walk
[1,2], i.e., a one-dimensional piecewise linear curve on a
lattice, subjected to particular geometrical constraints (self-
avoidance). In spite of its simplicity, this model captures sev-
eral of the essential features which determine the large scale
properties of such molecules and has been adapted to include
attractive forces (to model collapse in polymers), closed to
form a ring (to examine topological features such as knot-
ting), and extended to a variety of related models relevant to
branched polymers. However, some biologically important
polymers such as duplex DNA and RNA exist as double-
stranded molecules, where the two strands of complementary
nucleotides are wound as right-handed helices around each
other and around a common axis [3]. In addition, the double
helix can wind in space to form a new helix of higher order,
in which case the molecule is said to be supercoiled. Super-
coiling in DNA can result from the binding of DNA to pro-
teins (histones) or, in the case of a closed circular molecule,
from topological and energetic constraints. Indeed if the mol-
ecule is closed to form a ring the two backbone strands of the
double helix form circles which can be linked, in the sense
that the strands cannot be separated without breaking one or
the other. The linking of closed circular DNA depends only
on the topological state of the strands and is maintained
throughout all conformational changes that occur in the ab-
sence of strand breakage: indeed, the distinctive conforma-
tional properties of closed circular DNA are a consequence
of this invariance. Moreover, the linking has important bio-
logical consequences. For instance, in the replication of
closed circular duplex DNA, the unwinding of the DNA
strands and the separation of the daughter chromosomes are
obstructed by linking of DNA strands. In the biological situ-
ation, these topological obstructions are removed by en-
zymes (topoisomerases) which pass DNA strands through
each other by means of enzyme-bridged transient breaks in
the DNA backbone strands.

It is clear that the introduction of simple models, which
take account of the double helix structure and the linking of
the two strands, would represent an important step towards
understanding the conformational properties of DNA-like
molecules and their topological and geometrical properties
such as linking and supercoiling. Unfortunately these fea-
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tures cannot be captured by models derived from self-
avoiding walks, because of their one-dimensional nature; a
higher level of complexity must be introduced.

A model which has proved useful in modeling the double
helix structure and the topology of DNA is the ribbon model
[4,5], in which the hydrogen bonds between the nucleotides
of the two strands form an orientable ribbon surface whose
boundary is precisely the two backbone strands. A particu-
larly interesting result for this model is a conservation theo-
rem relating the twist and writhe of orientable ribbons to the
linking number (giving a quantitative description of the link-
ing) of the two boundary curves [6,7].

In this paper we introduce a lattice version of the ribbon
model. This has several important advantages. First it allows
us to use techniques from self-avoiding walk theory to prove
theorems about the model, which are very helpful in under-
standing the asymptotic behavior. In addition, the discrete
nature of the model is particularly suitable for Monte Carlo
methods, which can be used to supply additional results.

We shall be concerned with the simple cubic lattice Z>
and we define a plaquette as a unit square, with vertices
having integer coordinates. We define an open ribbon as an
ordered sequence of plaquettes labeled i=1,2,...,n such
that the following are true.

(i) Every two adjacent plaquettes (|i—j|=1) in the se-
quence have a common edge.

(ii) Two plaquettes (i and j) cannot be incident on a com-
mon edge unless |i—j|=1.

(iii) Two nonadjacent plaquettes cannot be incident on a
common vertex unless they are also incident on a common
plaquette.

(iv) Not more than three plaquettes can be incident on a
common vertex.

We call the the number of edges which a plaquette has in
common with other plaquettes the degree of the plaquette. In
an open ribbon the first and last plaquettes have degree 1,
and all other plaquettes have degree 2. We write w,, for the
number of open ribbons with n plaquettes, where two rib-
bons are considered distinct if they cannot be superimposed
by translation.
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In a closed ribbon every plaquette has degree 2 and, also
in this case, two closed ribbons are considered distinct if they
cannot be superimposed by translation. Closed ribbons can
be orientable (i.e., having two boundary curves) or nonori-
entable (having only one boundary curve). We write r, for
the number of closed ribbons with n plaquettes, and respec-
tively 7, and r, for the numbers of closed ribbons with n
plaquettes which are orientable and nonorientable: clearly
ra=rotra.

It is very useful to have upper and lower bounds on w,
and r,, since such bounds are essential in proving rigorous
results about the asymptotic behavior of the model. More-
over, they represent a crucial comparison for the numerical
results. For w,, it is not difficult to show that
3(2%2)" '<w,<36(3%3)" 2. The upper bound can be
obtained by considering objects defined as follows. The first
plaquette is in any of the three coordinate planes, and the
second is incident on one of the four edges of the first
plaquette, but is not superimposed with the first plaquette.
The kth plaquette is added so that it has an edge incident on
one of the edges of the (k— 1)th plaquette, other than the
edge on which the (k— 1)th and (k — 2)th plaquettes are both
incident. In addition, the kth and (k— 1)th plaquettes are not
superimposed. Clearly w,<36(3Xx3)""? since the first
plaquette can be embedded in the lattice in three ways, the
second can be added to this in 4 X3 ways (choose an edge in
four ways, and an orientation in three ways), and subsequent
ones in at most 3 X3 ways (choose an edge in three ways,
since one has already been used, and an orientation in three
ways).

To obtain the lower bound consider the number of open
ribbons with n plaquettes which have the property that the
barycenter of the ith plaquette has at least one coordinate
larger, and no coordinate smaller, than the corresponding co-
ordinate of the barycenter of the (i—1)th plaquette. Such
objects are certainly examples of open ribbons and give the
inequality w,=>3(2%2)""! since the first plaquette can be
embedded in the lattice in three ways and, when adding sub-
sequent plaquettes, the edge to which the next plaquette is to
be added can be chosen in two ways, and the orientation in
two ways.

The growth of the number of open ribbons is con-
trolled by the growth constant p, defined as logp
=lim,_,.n " 'logw, . One can use concatenation arguments
to prove that this limit exists. Moreover, from the two
bounds obtained above it is clear that 4<p=<9. Using the
same techniques it is also possible to prove that the growth
constant exists for closed ribbons, for closed orientable rib-
bons, and for closed nonorientable ribbons, and that in all
three cases it is equal to the growth constant p of open rib-
bons.

We have used a grand canonical Monte Carlo algorithm to
generate a sample of closed ribbons (orientable and nonori-
entable). The algorithm is based on sampling along a realiza-
tion of a Markov chain, defined on the set of all closed rib-
bons. The proposed moves are of two types. One type is
closely related to the pivot moves for polygons [8], which
make large changes in the conformation of the ribbon but do
not change the number of plaquettes. The second type is
related to the local moves of the Berg—Foester—Aragao de
Carvalho—Caraccioli—Frolich (BFACF) algorithm [9-11],
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FIG. 1. The n dependence of the mean-square radius of gyration
for closed ribbons.

which can change the number of plaquettes in the ribbon.
The details of these moves, and a proof of ergodicity, will be
given elsewhere [12]. Writing K for the fugacity associated
with the number of plaquettes, we define the generating
function

G, (K)=2, r,K"n (1)

n

which is expected to be singular at K=1/p and to behave
like

G o(K)~A/(1—pK)*~2"4 @)

for K smaller than but close to 1/p. The average number,
(n),, of plaquettes in the ribbon should then behave as

K(a—=2+q)p

(Mo~ —9—px (3)

so that the value of p can be obtained by plotting 1/n),
against 1/K. We have carried out runs at a number of values
of K, corresponding to values of {n); of up to about 400.
Analyzing these data in this way gives an estimate of p of
p=4.33*+0.09, so that the lower bound derived above
(p=4) is reasonably close to the numerical estimate.

At the same time we have calculated the mean-square
radius of gyration (S?), of the ribbon in this ensemble. In
this case we have considered orientable and nonorientable
ribbons separately, in order to compare the two cases. In each
case we expect the behavior to be given by

(82)~(n)2"(1+B(n);*) (4)

and we show the dependence of (S?); on (n); in Fig. 1. The
results for the orientable and nonorientable cases are essen-
tially superimposed and we give only the average values.
Fitting the data to the form given by (4) with A taken to be
1/2 [13] gives an estimate of v of 0.591+0.016. [The error
estimate takes account only of statistical errors, and not any
systematic errors induced by terms omitted from (4).] As
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FIG. 2. The mean of the absolute value of the writhe of the
boundary curve as a function of the average length of the boundary
curve. The upper curve is for nonorientable ribbons and the lower
curve is for orientable ribbons. The results plotted are for g=3.

expected, this is equal, within the error bars, to the value for
a self-avoiding walk in d=3 [14].

An interesting measure of the entanglement complexity of
an object such as a polygon is the writhe [6,7]. In a similar
way we can use the writhe of the boundary curve (or curves)
of the ribbon as a measure of the entanglement complexity of
the ribbon. In order to define writhe, consider any simple
closed curve in R3, and project it onto R? in some chosen
direction. In general, the projection will have crossings and,
for almost all projection directions, these crossings will be
transverse, so that we can associate a sign +1 or —1 with
each crossing. For this projection we form the sum of these
signed crossing numbers and average over all projection di-
rections. This average quantity is the writhe W of the curve
[7]. Writhe is a geometrical quantity (since it is not invariant
under ambient isotopy) and is a real number which measures
the extent to which the curve is supercoiled. We have calcu-
lated the average writhe of the two boundary curves of ori-
entable ribbons, and of the single boundary curve of nonori-
entable ribbons, as a function of the length (m) of the
boundary curve. (This is conveniently accomplished by mak-
ing use of a theorem of Lacher and Sumners [15] which
relates the writhe to the average linking number of the curve
with its pushoffs in certain directions.) For polygons, the
mean of the absolute value of the writhe behaves as [16]

(IWy|)~m?, (5)

and we expect similar power law behavior in the case of
ribbons. In Fig. 2 we show a log-log plot for the dependence
of (|W|), on (m),, the average of the length of the bound-
ary. The lower curve is for orientable ribbons and the upper
curve is for nonorientable ribbons. In each case the behavior
is quite linear and our estimates of the exponent are
¢=0.51+0.02 (nonorientable) and {=0.51*0.01 (orient-
able). These values are very close to the corresponding value
for a polygon, where it is known that the value is bounded
below by 1/2 [16].
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FIG. 3. The mean of the absolute value of the linking number of

the two boundary curves of an orientable ribbon, as a function of
the average length of the ribbon. The results are plotted for g=3.

In the case of the orientable ribbons we can ask about the
behavior of the linking number (L) of the two boundary
curves. [To define this, orient the two boundary curves of the
ribbon in parallel, and project the oriented boundary curves
onto R2. The sum of the signed crossing numbers for the
overcrossings of one boundary curve (A, say) with the other
(B, say) is the linking number L(A,B). This quantity is in-
variant under ambient isotopy and under interchange of A
and B.] In Fig. 3 we show a log-log plot of the mean of the
absolute value of the linking number against the average
length of the boundary curves. The behavior is quite linear
with an estimated slope of 0.50+0.01, so that (|L|), appears
to scale as (m)g with & being about 1/2. Hence it appears
probable that §=¢, so that these two measures of entangle-
ment complexity grow at the same rate. (Experimental work
suggests that changes in the linking number translate into
changes in twist and writhe in the ratio 0.28:0.72 in DNA
(17])

In summary, we have introduced a discrete ribbon model
on the cubic lattice to investigate the behavior of double-
stranded molecules such as DNA and RNA. We have shown
that, in spite of its higher complexity, the ribbon model
shares many of the geometrical properties of its simpler ran-
dom walk counterparts. In particular, as far as the mean-
square radius of gyration and the writhe are concerned, we
found that ribbons and self-avoiding walks seem to belong to
the same universality class. On the other hand, ribbon mod-
els are richer, in that topological features such as the linking
of the two boundary curves can be investigated. We found
that the average linking number increases with » following a
power law of the form (n)}lﬂ, exactly as in the case of the
writhe. This interesting result suggests that the writhe and the
linking number, in spite of their different nature, capture a
universal feature of the entanglement complexity of the
ribbon.

There are many challenging questions which remain
about the properties of the ribbon model. It will be interest-
ing to see if the universal behavior of the writhe and of the
linking number can be extended to other measures of the
entanglement complexity of the ribbon. In addition, by add-
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ing suitable fugacities in the model it should be possible to
analyze, by Monte Carlo simulations, the occurrence of par-
ticular structures (plectonemic and solenoidal forms,
branched conformations, etc.) in supercoiled DNA and to
study how their occurrence depends on the ionic strength of
the solvent in which the molecule is dissolved. Some work
has already been carried out in this direction, both for a
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cylinder model (see [18] for a review) and by using a walk-
like model with a Yukawa potential [19], and it will be in-
teresting to compare these results with those obtained for the
ribbon model.
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